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Abstract

The leximin ranking of vectors of values taken from a totally ordered set is sometimes encountered in ®elds like

operational research, social choice or numerical analysis, but has seldom been studied in connexion with fuzzy opti-

mization. In this paper we prove that a leximin-optimal solution to a vector ranking problem on the unit hypercube can

be obtained as the limit of optimal solutions to a problem of fuzzy multiple criteria optimization where fuzzy sets are

aggregated either using a triangular norm or a generalized mean or an ordered weighted average (OWA) opera-

tion. Ó 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Fuzzy optimization after Bellman and Zadeh
(1970) is based on the maximin strategy. Namely,
given n criteria or ¯exible constraints described
by fuzzy sets F1; . . . ; Fn de®ned on a solution space
X, an optimal solution in fuzzy optimization is
de®ned as any x� 2 X which maximizes
mini�1;...;n lFi

�x�, where lFi
is the membership

function of Fi, usually ranging on the unit interval.

This strategy has been criticized because the
minimum operator does not discriminate among
solutions x;x0 as soon as they equally satisfy the
least satis®ed constraints or criteria. In order to
improve this situation, there have been proposals
to turn the minimum operation into a triangular
norm (such as the product) or an ordered weighted
average (OWA) (Yager, 1988). However doing so,
the ordering between solutions noticeably di�ers
from the one obtained in the maximin approach.

In contrast several re®nements of the maximin
ordering have been pointed out (Fargier et al.,
1993; Dubois et al., 1996) that improve the dis-
crimination power without questioning the maxi-
min ordering. Among these re®nements, the
leximin ordering is the most well known. To our
knowledge it was ®rst exhibited in the numerical
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analysis literature by Rice (1962) and by Descloux
(1963). More recently, it has been proposed in the
operations research literature by Behringer (1981)
for solving bottleneck optimization problems, and
in the social choice literature (Sen, 1986; Moulin,
1988) for representing egalitarist social welfare
functions. An authoritative survey on lexico-
graphic orders and decision rules is due to Fish-
burn (1974). However, he does not mention the
leximin ordering nor does he refer to the numerical
analysis literature.

The leximin ordering is de®ned as follows: let
x � �x1; . . . ; xn� 2 �0; 1�n and y � �y1; . . . ; yn� 2 �0; 1�n.
Then rearrange x and y in increasing order
(xi1 6 � � � 6 xin and yj1

6 � � � 6 yjn )

x >lex y iff 9k 2 f1; . . . ; ng : 8l�
< k;

xil � yjl and xik > yjkg: �1�

This ordering is such that its opposite x Plex y i�
:�y >lex x� is a complete pre-ordering.

In this paper we show that leximin-optimal
solutions to fuzzy optimization problems can be
approached by means of optimal solutions to
fuzzy optimization problems based on triangular
norms, generalized means, as well as OWAs.

2. Leximin as a strict Chebyshev norm

The oldest approach to the leximin notion is
known in Numerical Analysis as the strict
Chebyshev norm. Let us recall some of their de®-
nitions.

The approximation of a function f 2H of a
real variable by means of elements of a subspace
L �H consists in ®nding the function f̂ 2L
minimizing the distance to f:

kf ÿ f̂ k � min
h2L
kf ÿ hk;

where k � k is a functional norm in H, a function
space.

In the sequel of this section, we only consider
functions known in some discrete points B �
faigi�1;n. For each function h 2H, one can obtain
a vector x�h� 2 Rn whose element xi equals h�ai�.
Let Ln � fx�h� : h 2Lg. The functional ap-

proximation problem can therefore be solved by
®nding a vector x� 2Ln as close as possible to
y�f � 2 Rn, where yi � f �ai�. And the distance is
now computed according to a vector norm.

The most well-known norms are the H�older
ones (Lp-norms):

ky�f � ÿ x�h�kp �
Xn

i�1

jyi

 
ÿ xijp

!1=p

;

16 p6 �1:

The Euclidian distance corresponds to the L2-
norm, while the L1-norm, also called the Cheby-
shev norm, is very particular

ky�f � ÿ x�h�k1 � max
i�1;...;n

jyi ÿ xij:

Rice (1962) had to cope with the non-unique-
ness of the best Chebyshev approximation to a
given function f �x� from a subspace L of the
continuous functions on a set of points B. He in-
troduced the em strict Chebyshev approximation.
Very interestingly, the de®nition he gave is con-
structive (see also Duris and Temple, 1973).

Brie¯y, once L1, the set of the Chebyshev
approximations to f from L on B, has been
determined, one de®nes the set of critical
points B1. The latter is the minimal subset
of B containing all the points where the ap-
proximation error has to be exactly equal
to the Chebyshev norm of the error. In other
words, for any best Chebyshev approxima-
tion of f, we have that

i 2 B1 ) jyi ÿ xij � ky�f � ÿ x�h�k:

Then, one computes L2 the set of Chebyshev
approximations to f from L1 on BÿB1.
And so on. Finally, the procedure gives the
strict Chebyshev approximation, which has
been proven to be unique in this case.

The technique for computing leximin-optimal
solutions to fuzzy constraint satisfaction problems
described in Dubois and Fortemps (1999) is di-
rectly related to the above algorithmic de®nition.
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Descloux (1963) showed that the limit of the
best Lp-approximations converges to the strict
Chebyshev approximation. This result started
some works on Polya algorithm that use the fol-
lowing convergence schema. Theoretically, the
strict L1 solution can be viewed as the limit of the
Lp solutions, as p tends to in®nity, but the rate of
convergence is very slow, namely 1=p (Egger and
Huotari, 1990). Even if it has not turned out to be
tractable, because of the very large values of p
needed, it makes sense to study the behavior of the
convergence when parameterized t-norms are
considered.

It is easy to relate such an approximation
scheme to the fuzzy constraint satisfaction prob-
lem. Each feasible solution to a fuzzy constraint
problem is viewed as a vector x. Maximizing
mini xi in the feasibility domain L comes down to
computing the best approximation to the vector
1 � �1; 1; . . . ; 1� in the sense of the Chebyshev
norm

k1ÿ x�k1 � min
x2L
k1ÿ xk1;

where the norm has to be computed in the n-di-
mensional space corresponding to the constraints
Ci 2 C, and the strict Chebyshev approximations
correspond to leximin-optimal solutions.

Alternatively we can consider the dual problem
of minimizing maxi lFi

�x�. It comes down to
computing the Chebyshev approximation
x� 2 V � �0; 1�n to the vector �0; 0; . . . ; 0�. This
time it comes down to the same kind of ordering as
leximin but the xi's are increasingly ordered in this
case. The corresponding ordering can be called
leximax:

x <lexmax y ()
if xi1 P � � �P xin and yj1

P � � �P yjn

then 9k 2 1; . . . ; n : 8l < k; xil � yjl and xik < yjk :

�
Clearly a leximin-optimal solution to the problem:
maximize mini�1;...;n xi for x 2 V � �0; 1�n is a lexi-
max optimal solution to the problem: minimize
maxi�1;...;n yi for y 2 V 0 � �0; 1�n where V 0 �
fy : 8i; yi � 1ÿ xi; x 2 V g. Maximax and mini-
min optimization problems can be lexicographi-
cally re®ned in a similar way.

3. Fuzzy set aggregation operations

Aggregation operators such as t-norms and t-
conorms are commonly used in the fuzzy ®eld in-
stead of min and max. A t-norm T is a semigroup
of the unit interval (associative, commutative, with
identity 1) which is non-decreasing in each place.
Continuous Archimedean t-norms are such that
8a 2 �0; 1�; aTa < a. Any Archimedean continu-
ous t-norm T can be written as follows (Schweizer
and Sklar, 1983):

aTb � /ÿ1 min�/�0�; /�a�� � /�b���; �2�
where / : �0; 1� ! �0;/�0�� is a continuous and
decreasing function, such that /�1� � 0. Similar to
H�older norms, parameterized families of strict t-
norms Tp, where p 2 R is a parameter, can be
written as

Tp�x� � /ÿ1
p

Xn

i�1

/p�xi�
 !

�3�

for which /p�0� � �1. For our purpose, we only
consider parameterized families of t-norms such
that

lim
p!1

Tp�x� � jxj1 � min
i

xi;

e.g., the Frank family �q � 1=p� (Frank, 1979):

Tp�x� � logq 1

"
�
Qn

i�1�qxi ÿ 1�
�qÿ 1��nÿ1�

#
; �4�

Schweizer and Sklar (1961) family:

Tp�x� � max 0;
�����������������������������������X

i

xÿp
i ÿ �p � 1�ÿp

r !
; �5�

or even some families of nilpotent t-norms such as
Yager (1980) family:

Tp�x� � 1ÿmin 1;
X

i

�1
"0@ ÿ xi�p

#1=p
1A �6�

under some condition of non-saturation.
More generally, for any parameter p 2 �0;�1�

and any generator / of a triangular norm, let Tp be
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the triangular norm additively generated by /p

using (2). Then limp!1 Tp � min (see Klement
et al., 1999).

Another family to which the main result of this
paper applies is the family of generalized arith-
metic means (for instance, Fodor and Roubens,
1994)

Mp�x� � Uÿ1
p

1

n

X
i

Up�xi�
 !

; �7�

where Up is any continuous strictly monotonic
function on �0; 1�. For instance, a well-known
family, called the ``root-power mean'' studied in
Dujmovic (1974, 1975), is obtained with
Up�a� � ap, which converges to min when
p ! ÿ1.

A leximin-optimal solution to the problem of
maximizing mini�1;...;n xi, on some subset V of
�0; 1�n, is denoted x1 and indices are reordered
such that x11 6 � � � 6 x1n . The following result is
noticeable.

Lemma 1. If x1 is a leximin-optimal solution to
the problem of maximizing mini�1;...;n xi, on a convex
set V, if x 2 V ; x 6� x1 and if k � inffi : xi 6� x1i g
then 9m P k such that xm < x1k . Moreover
x1 >lex x.

Proof. Assume that 8i P k : xi P x1k . Build the
solution z � x� x1=2. z lies in V since V is convex.
· 8i < k, we have zi � x1i since xi � x1i .
· For i � k, zk � xk � x1k =2 > x1k , since xk 6� x1k

and xk P x1k .
· 8i > k such that x1i � x1k , zi � x1k .
· 8i > k such that x1i > x1k , zi > x1k .
Therefore, z should be leximin-better than x1,
which is impossible since x1 is optimal. Thus,
9m P k such that xm < x1k .

When considering the ®rst �k ÿ 1� components,
let K be the number of x1i less than or equal to xm.
Since x1 is increasingly ordered, the overall num-
ber of x1i less than or equal to xm is K. But in x, this
number is at least equal to �K � 1�, since the
�k ÿ 1� ®rst components of x are equal to those of
x1. When comparing x and x1 after reordering x
increasingly, it is obvious that x1iK�1

> xjK�1
. So,

x1 >lex x: �

From this lemma, it is clear that the leximin
solution to maximizing mini�1;...;n xi for x 2 V �
�0; 1�n is unique, when V is convex.

If x 2 �0; 1�n, let P0�x� � 0 � �0; . . . ; 0� and for
all 0 < k6 n, let Pk�x� � �x1; . . . ; xk; 0 . . . ; 0�, the
vector whose ®rst k components are equal to those
of x, while the remaining ones are set equal to zero.

Lemma 2. If 06 k6 n and � > 0, there is a d > 0
such that, if y 2 �0; 1�n and kPk�y�k1 < d, then
there is a vector x 2 �0; 1�n such that Pk�x� � Pk�y�
and kxk1 < �.

See Egger and Huotari (1992) for the proof
based on the topological equivalence of norms.

Let ffpgp2�0;�1� be a two-place function family
in �0; 1�. We shall assume that fp can recursively be
extended to a function from �0; 1�n to �0; 1� as fol-
lows:

Constructiveness. For any n P 2 and
16 i6 n, for any x 2 �0; 1�i and any
y 2 �0; 1��nÿi�

, denoting z � �x; y� the vector
obtained by the concatenation of x and y,
9g�i;n� such that

fp�z� � g�i;n� fp�x�; fp�y�
ÿ �

: �8�

We shall assume moreover that limp!�1 fp � min,
that fp is commutative and continuous.

Let V be a closed convex subset of �0; 1�n and
assume that 8x 2 V ,

fp�x� � fp�x1; . . . ; xn� 6� 0 and 6� 1: �9�

The last property we need is that of cancella-
tiveness: and, for any n P 2 and 16 i6 n, for any
x; x0 2 �0; 1�i and any y 2 �0; 1��nÿi�

, such that
z � �x; y�, z0 � �x0; y� 2 V ,

fp�x� < fp�x0� ) fp�z� < fp�z0�: �10�

Let xp be an optimal solution to the problem of
maximizing fp�x� for x 2 V .

Lemma 3. If 06 k6 n, for a converging sequence
fpmg such that limm!1 pm � 1 and if limm!1
kxm ÿ xk1 � 0, then limm!1 fpm�xm

k�1; . . . ; xm
n� �

f1�xk�1; . . . ; xn� � min�xk�1; . . . ; xn�.
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This lemma is obvious due to the continuity of
fp.

Theorem 4. Let xp be an optimal solution to the
maximization of fp�x� over a convex subset V of
�0; 1�n, where fp is a continuous and commutative
aggregation operation satisfying (8)±(10) such that
limp!�1 fp�x� � mini xi. Then, limp!1 xp is the
leximin solution to the maximization of mini xi.

Proof. Since 0 < fp�xp� < 1, by the Bolzano±Wei-
erstrass Theorem, fxp; p 2 �1;�1�g contains a
convergent sequence. The rest of the proof is by
induction.

Since x1 is such that x11 6 � � � 6 x1n , there exist
numbers ri such that r1 < r2 < � � � < rl and
x1 � �r1; . . . ; r1; r2; . . . ; r2; . . . ; rl; . . . ; rl�. Let
C0 � ; and for 16m6 l, let Cm � fi : x1i 6 rmg.
Because of the index reordering, Cm has the form
f1; 2; . . . ; i�m�g.

Suppose that the limit holds for each i in Ck and
that fxpmg is a convergent subsequence of fxpg such
that limm!1 xpm � x. What about i 2 Ck�1?

Assume there exists i in Ck�1 n Ck such that
xi 6� x1i . Because of Lemma 1, there exists m P i
such that

xm < x1i � rk�1:

Let j be the cardinality of Ck � f1; 2; . . . ; i�k�g.
Therefore, remembering that f1 � min,

f1�xj�1; . . . ; xn�6 xm

< rk�1 � x1j�1

6 f1�x1j�1; . . . ; x1n �: �11�

Because, xpm converges to x1, at least for the j
®rst elements, we have

Pj xpm�

 ÿ x1�

1 ! 0: �12�

By Lemma 2, it exists a sequence fumg � �0; 1�n
such that Pj�um� � Pj�xpm ÿ x1� and kumk1 ! 0, as
m!1.

Let xm � um � x1. Then, Pj�xm� � Pj�xpm�, for
all m and limm!1 kxm ÿ x1k1 � 0.

Because of Lemma 3, as m!1,

fpm�xm
j�1; . . . ;xm

n� ! f1�x1j�1; . . . ; x1n �;
fpm�xpm

j�1; . . . ; xpm
n � ! f1�xj�1; . . . ; xn�;

since limm!1 xpm � x. Applying these limit results to
Eq. 11, there exists an index r such that when the j
®rst components are ignored

fpr�xpr
j�1; . . . ; xpr

n � < fpr�xr
j�1; . . . ;xr

n�:

Since, Pj�xm� � Pj�xpm�, namely xm and xpm have
their ®rst j components equal, Eqs. (8) and (10) give

fpr�xpr� < fpr�xr�: �13�
And this contradicts the de®nition of xpr which

is the solution of the maximization of fpr .
Therefore, 8i 2 Ck�1; limp!1 xp

i � x1i . Note that
this part of the proof already applies when k � 0,
so that the result holds for i 2 C1. So the result
holds 8i 2 f1; 2; . . . ; ng: �

Theorem 4 is a generalization of the theorem
proved in Egger and Huotari (1992) for H�older
norms to a large class of aggregation operators.

Particular cases of functions fp to which the
results apply are the continuous Archimedean t-
norms (for which the function g�i;n� is fp itself) and
generalized means described by Eq. (7).

Of course dual results concerning the leximax
can be obtained for suitable families of aggrega-
tion operators that converge to the maximum
operation.

4. Leximin as a limit of OWA operation-based

optimizations

An OWA operation (Yager, 1988; Yager and
Kacprzyk, 1988) is de®ned as follows:

Let w1; . . . ;wn be a set of weights such thatP
i wi � 1. Let x 2 �0; 1�n and denote

xj1
; . . . ; xjn reordered in the increasing order.

Then

OWAw�x� �
Xn

i�1

wixji : �14�
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In other words, it consists of a weighted average
of the reordered components of x. Such a proce-
dure is relevant when the order of the components
is more important than their initial labelling. It is a
form of quanti®ed aggregation expressing that
some possibly ill-de®ned proportion of criteria
must be satis®ed.

This class of aggregation operations covers the
entire interval between min and max operations,
including the arithmetic mean, the median and
the order-statistics. Fodor and Roubens (1994)
characterize it as the family of operators which
are neutral ± the components are treated inde-
pendently of their label ± monotonic, idempotent ±
F �x; . . . ; x� � x ± and stable under positive
linear transformations with the same unit for
ordered values. On the other hand, Grabisch et al.
(1995) prove that any OWA aggregator can be
expressed in an equivalent way as a Choquet
integral

Xn

i�1

xji l�Ai�� ÿ l�Ai�1��; �15�

where l�Ai� �
Pi

k�1 wk; l is a monotonic set-
function, Ai � fi; i� 1; . . . ; ng and l�Ai� only de-
pends on the cardinality of Ai.

A strong link between OWA operations and the
leximin ordering has been recently established in
Dubois et al. (1996a). Namely, the following result
holds.

Theorem 5. For any finite subset L of �0; 1�
(containing 0 and 1), there exists an OWA oper-
ation with a weight pattern w such that for any
x; y 2 Ln,

x >lex y ) OWAw�x� > OWAw�y�; �16�
x Plex y ) OWAw�x�P OWAw�y�: �17�

Proof. First, it is obvious that x �lex y implies that
8w, OWAw�x� � OWAw�y�.

Let 0 < � < mina;b2L;a6�b jaÿ bj. Let us exhibit a
suitable weight pattern w. Let x; y such that
x >lex y. We start from this assumption of strict

inequality and look for conditions on w that will
make the following inequality satis®ed:Xn

k�1

wkxik >
Xn

k�1

wkyjk : �18�

Let K � minfk : xik 6� yjkg. Inequality (18) be-
comes

wKxiK �
Xn

k�K�1

wkxik > wKyjK �
Xn

k�K�1

wkyjk : �19�

Since the vectors are increasingly ordered, the
worst case is encountered when 8k > K; xik � xiK

and 8k > K; yjk � 1.
Therefore, the following inequality has to hold:

wKxiK � xiK

Xn

k�K�1

wk > wKyjK �
Xn

k�K�1

wk: �20�

The greatest value that yjK can reach is less than
�xiK ÿ ��, since x >lex y. Therefore, the previous
relation holds as soon as we have

�wK � xiK

Xn

k�K�1

wk >
Xn

k�K�1

wk: �21�

Again, we are looking for the worst case, which
occurs when xiK is equal to �. Finally, we have that

wK � 1ÿ �
�

Xn

l�K�1

wl: �22�

This recurrence relation gives the following
weight pattern:

wn � �nÿ1;

wnÿ1 � �1ÿ ���nÿ2;

..

. �23�
w2 � �1ÿ ���;
w1 � �1ÿ ��: �

Let us consider again a convex subset V of
�0; 1�n and x1 a leximin-optimal vector in V. De-
note OWA� for � 2 �0; 1� the ordered weighted
average operation using the weight pattern in
Theorem 5. Let x� be a vector which maximizes
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OWA��x� for x 2 V . From the above theorem, it is
clear that if OWA��x1� < OWA��x��, there exists
�0 < � such that OWA�0 �x1� > OWA�0 �x��, since
x1 >lex x�. To do so, it is enough to choose
�0 < min��;mini;j : x1i 6�x�j

jx1i ÿ x�jj�. Indeed, it is ob-

vious that if x >lex y and OWA��x� > OWA��y�
then for any �0 < �, OWA�0 �x� > OWA�0 �y�.

As in the case of aggregation operations dealt
with in the previous section, OWA operations
enable the leximin-optimal solution to be attained
in the limit.

Theorem 6. Let fxlgl�1;2;... be a sequence of OWA�l -
maximal points of a closed subset V of �0; 1�n, for
f�lgl�1;2;... a decreasing sequence of positive numbers
converging to 0. Any point x adherent to the se-
quence fxlg is leximin-optimal in V.

Proof. Recall that x is adherent to the sequence
fxlg, if 8e > 0, 9k such that kxÿ xkk < e.

By characterization of an adherent point, there
exists a subsequence fylgl�1;... of fxlg converging
to x. Since each yl is OWA-maximal for the ap-
propriate weight pattern based on some �l, we
have

OWA�l�yl�P OWA�l�v� 8v 2 V :

Since the sequence fylg converges to x,
kyl ÿ xk ! 0. And therefore because the OWA
operators are continuous, there exists K, such that
8k P K,

OWA�k �yk�P OWA�k �v� 8v 2 V

and

OWA�k �x�P OWA�k �v� 8v 2 V :

This implies that x Plex v; 8v 2 V . Indeed, as-
sume that there exists v 2 V , such that v >lex x.
Then, because of Theorem 5, for k large enough
(i.e. �k su�ciently small), we have

OWA�k �x� < OWA�k �v�:

And this is absurd. �

In the previous theorem, we prove that any
convergent subsequence of the fx�g�!0 in a closed
subset V converges to a leximin-optimal solution.
It is now clear that if the leximin-optimal solution
is unique (in particular when V is convex), the
whole sequence fx�g�!0 converges to this leximin-
optimal solution.

However, one could wonder if, when V is not
convex, any leximin-optimal solution can be
reached as the limit of a convergent subsequence
of fx�g�!0. Unfortunately, a small example can
show that there may exist solutions which are not
reachable by such a convergent scheme. Indeed,
consider the subset V represented in Fig. 1 and
bounded by the two curves.

In this bicriteria case, the two leximin-optimal
solutions are x1 and x0

1
, which are symmetric with

respect to the main diagonal. Looking for an
OWA-optimal solution leads to a piecewise linear
objective optimization, since the objective can be
written �1ÿ ��z� �z with z � minfx1; x2g and
z � maxfx1; x2g. For instance, if � � 2

7
, it gives the

objective z1 combining both partial objective
function z11 on the South-East part of the ®gure
and z12 on the North-West part. z11 and z12 (plotted

Fig. 1. Example of non-convex subset V with two leximin-

optimal solutions.
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in dotted lines) have symmetric slopes with respect
to the main diagonal of the ®gure.

Because we are looking for a maximal solution
w.r.t. the z1 criterion, it is obvious that the OWA-
optimal solution will be on the lower curve for this
value of �, since the function z11 will reach ®rst the
lower curve. In other words, the values that can be
attained on the other curve are smaller than the
best value on the South-East curve. It will be the
case also for any other value of � (e.g. � � 1

6
gives

the partial objectives in solid lines). Therefore, all
the OWA-optimal solutions of any sequence fx�g
will be on the lower circle. The limit of such a
sequence as �! 0 will always be x1. Only solution
x1 is reachable by the Polya algorithm with OWA
operators.

5. Concluding remarks

This paper has shown that the leximin order-
ing is part of the landscape of fuzzy set theoret-
ical operations and is a natural re®nement of the
minimum operation in this setting. Note that the
result in Section 2 applies to families of contin-
uous t-norms or generalized means that converge
to the minimum, regardless if the fact that these
families are increasing or decreasing in the pa-
rameter. Moreover, the proof of the represent-
ability of the leximin ordering by OWA
operations in the limit cannot use the result of
Section 2, because the property (8) does not ap-
ply to OWA operations. Indeed, OWA�x1; . . . ; xn�
cannot be computed from OWA�x1; . . . ; xi� and
OWA�xi�1; . . . ; xn�.

The results of this paper enable a lot of variants
of Polya algorithm to be imagined for computing
leximin-optimal solutions to fuzzy optimization
problems.
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